Трирема вновь в открытом море (часть 1)

В результате многолетней кропотливой работы удалось воссоздать легендарный греческий военный корабль. Морские испытания показали, что он действительно мог развивать рекордную скорость, о которой повествуют древние хроники

Джон Ф. Коутс


Рис.1. “Олимпия”, восстановленная трирема, во время плавания в заливе Сароникое, где около 2,5 тыс. лет назад афинский флот из таких кораблей наголову разбил персидский флот. Длина корабля – 36,8, ширина – 5,4 и высота (от киля до тентовой палубы) – 3,6 м. Полное водоизмещение – 45 т.

В июне 1987 г. вблизи древнего афинского порта Пирей был спущен на воду полностью восстановленный греческий военный корабль, называемый триремой. Последний корабль такого типа был построен более 2000 лет назад. При испытании нового корабля в открытом море команда из 170 гребцов различных национальностей, имеющих разную физическую подготовку, развила на “Олимпии” (так назвали это судно) поистине спринтерскую скорость в 7 узлов (13 км/ч). Радиус поворота корабля при полной скорости оказался равным 1,25 длины его корпуса, или около 46 м. Эти данные соответствуют сведениям, содержащимся в древних описаниях прекрасных мореходных качеств трирем. Пожалуй, о самом замечательном из них рассказывает Фукидид. По его словам, в 427 г. до н. э. такой корабль совершил немногим более чем за одни сутки 340-километровый безостановочный переход из Афин в Митилини с расчетной крейсерской скоростью 7,5 узлов.

В древности эти высокоманевренные суда имели бронзовый таран, которым в бою пробивались корпуса вражеских кораблей. В 480 г. до н. э. греки одержали на триремах победу при Саламине над превосходящими силами персидского флота. Это было одно из самых значительных сражений в истории западных стран; в случае поражения греки оказались бы под персидским игом, и тогда не было бы ни одного из относящихся к более позднему периоду культурных достижений Греции, и в частности Афин. После этого триремы оставались на вооружении греков еще на протяжении полутора столетий и играли важную роль в системе обороны страны и защите торговых судов от пиратов, которых было немало на просторах Средиземного моря. Тем самым они способствовали созданию благоприятных условий для развития в Афинах искусства, литературы и философии, т. е. всего того, что затем в качестве ценнейшего наследия перешло от Греции западному миру. Но, несмотря на это, современная наука располагает лишь скудными сведениями об этих замечательных кораблях. До нас не дошли остатки трирем, а литература и искусство дают лишь отрывочные сведения по этому вопросу.

Рисунок откроется в новом окне
Рис.2. Виды сбоку, сверху и в разрезе “Олимпии” приведены в одном масштабе. Все 170 гребцов размещались в три ряда с каждого борта корабля: по 31 человеку в верхних и по 27 человек в двух нижних рядах. Схема размещения имеет V-образную форму: гребцы самого нижнего ряда находились дальше, а верхнего – ближе всего к борту. Уключины самых верхних весел вставлялись в выносные кронштейны. Места гребцов верхних и нижних рядов имели наклон к борту в несколько градусов, с тем, чтобы верхушки весел были на равных расстояниях друг от друга.

Начиная с эпохи Возрождения, ученые ведут споры относительно действительной формы и технических характеристик трирем. За последние 50 лет Джону Моррисону из Кембриджского университета удалось выяснить многие важные вопросы. К началу 80-х годов Моррисон собрал и проанализировал достаточное количество древних литературных, эпиграфических и иллюстративных данных, чтобы получить убедительное представление о принципиальной конструкции трирем. Примерно к этому же периоду относятся и мои собственные изыскания в области конструкции военных кораблей. Кроме того, подводные раскопки, проведенные в 70-х годах в окрестностях Марсалы (Сицилия) Онором Фростом из Морского научно-исследовательского общества в Лондоне, позволили получить новые важные сведения о форме и устройстве длинных весельных кораблей, плававших в водах древнего Средиземноморья. Все эти данные позволили прийти к более определенным выводам о конструкции таких кораблей.

В 1981 г. Фрэнк Уэлш, банкир и писатель из Суффолка, в течение долгого времени изучавший триремы, предложил создать полномасштабную модель корабля. К тому времени мы с Моррисоном также пришли к выводу о том, что настало время для практического воплощения этой идеи. Финансовые средства, выделенные главным образом греческими властями, позволили в 1987 г. завершить строительство “Олимпии” на одной из судоверфей в Пирее.


Рис.3. Корпус корабля в древнем Средиземноморье сооружали из досок, которые соединяли шипами, вставленными в гнезда, вырезанные в кромках досок. Каждый шип фиксировали двумя штифтами. Корпус начинали возводить от киля, обшивая досками остов из брусьев.

После проведения расчетных, исследовательских и строительных работ, на которые ушло 5 лет, был создан корабль, конструкция которого оказалась довольно мощной. Нет сомнения, что трирема могла появиться в VII в. до н. э. только в результате упорных и заслуживающих всяческого восхищения усилий, предпринятых в Древней Греции и, возможно, в других частях восточного Средиземноморья. Теперь известно, что древние кораблестроители сумели создать оптимальную конструкцию корабля, имея в своем распоряжении ограниченный набор материалов и методов строительства и не обладая современными знаниями в области гидростатики, остойчивости корабля, строительной механики и физики. И в самом деле, факты свидетельствуют о том, что триремы были самыми быстроходными из всех когда-либо построенных весельных судов. Можно даже говорить о том, что техника древнегреческих корабелов достигла уровня, едва превзойденного только во второй половине XVIII столетия.

Строительство “Олимпии” обошлось почти в 700 тыс. долл. и заняло два года. В 482 г. до н. э. в Афинах с населением около 250 тыс. жителей имелось около 200 трирем. Судя по всему, эти корабли играли главную роль в системе вооружения, частично предназначавшегося для удовлетворения самых насущных потребностей морской войны с соперничающим городом-государством Эгиной, но в основном для отражения ожидавшегося второго нашествия персов. Наличие столь мощного флота свидетельствует о возможности древних греков организовать строительство кораблей в масштабах, которые в наше время, в период второй мировой войны, были реализованы на американских верфях Генри Дж. Кайзером. К сожалению, хотя в этом и нет ничего удивительного, поскольку в Древней Греции не было промышленной документации, до нас не дошло каких-либо сведений о том, как практически осуществлялась эта обширная программ


Рис. 4. Корпус “Олимпии” довольно гладкий, имеет плавные обводы и обеспечивает небольшую осадку корабля. Отверстия для весел самого нижнего яруса, расположенные на высоте 40 см от ватерлинии, защищены кожаными рукавами. Уключины весел самого верхнего ряда вставляли в выносные кронштейны. На переднем плане автор проекта (в середине) и его коллеги обсуждают форму тарана.

Древние источники свидетельствуют о том, что строительство трирем могли себе позволить только более богатые города-государства на территории континентальной Греции и Сицилии, а в Малой Азии те из них, которые пользовались материальной поддержкой Персии. Остальным приходилось довольствоваться 50-весельными пентеконтерами. Города, обладавшие такими дорогостоящими кораблями, наверняка имели военное преимущество, которое они не могли себе обеспечить никакими другими средствами. Теоретические расчеты основных ходовых качеств трирем и их, гораздо меньших по размеру предшественников показали, что по маневренности, этой столь важной боевой характеристике кораблей, практически единственным вооружением, которых являлся таран, триремы лишь незначительно уступали гораздо более экономичным пентеконтерам.

Таким образом, основными преимуществами трирем были их более высокая скорость и многочисленный экипаж. На веслах скорость трирем могла примерно на 30% превышать скорость пентеконтеров. Они наверняка могли настигать корабли всех других известных в то время типов, что позволяло вести наступательную тактику в бою. То обстоятельство, что триремы имели более многочисленный экипаж, могло, вероятно, обеспечивать военное преимущество на берегу; у нас нет сведений о том, что гребцы когда-либо участвовали в захвате вражеских кораблей на море.

Как это ни удивительно, но непосредственным предшественником триремы был, по-видимому, пентеконтер, приводимый в движение усилиями 12 и 13 гребцов, сидевших рядами друг над другом вдоль каждого борта корабля. В литературе нет сведений о существовании какого-либо типа корабля промежуточного размера, хотя в “Илиаде” и имеются неясные намеки на то, что был какой-то корабль с 60 гребцами, размещавшимися на двух уровнях на каждом борту. Почему же, в таком случае, произошел столь резкий скачок от пентеконтеров к триремам, которые сильно отличались от первых и по размерам, и по стоимости? Историкам, возможно, когда-нибудь и удастся пролить свет на этот вопрос.

Проведенные более 100 лет назад раскопки фундаментов сотен мастерских по строительству трирем в Зее в окрестности Пирея показали, что ширина триремы была не более 5,6, а длина около 37 м. Из сохранившихся надписей известно, что на корабле находились 170 гребцов, капитан, около десятка матросов и офицеров, а также 14 солдат и лучников. Литературные источники сообщают, что гребцы размещались в три ряда с каждого борта: 31 человек в первом и по 27 в двух других. Сидели они, скорее всего, на жестко закрепленных, а не скользящих местах. Неясно одно, каким образом такое количество гребцов могло быть размещено в столь ограниченном пространстве. Активно обсуждался также вопрос о том, могли ли триремы развивать такую высокую скорость (не менее 9,5 узлов) только за счет усилий гребцов, как это явствует из письменных источников, или же для этого дополнительно использовали паруса.


Рис.5. Волновое сопротивление возникает в результате взаимодействия стоячих волн (пунктирные пинии) у носа и кормы. На малом ходу их влияние незначительно, но при увеличении скорости длина стоячих волн возрастает, при этом носовые и кормовые волны попеременно находятся то в фазе (вверху), то в противофазе (в середине). В первом случае сопротивление увеличивается быстро, во втором – медленно. В определенный момент скорость корабля достигает величины, при которой половина длины носовой волны оказывается равной длине корабля (внизу). Эту критическую скорость можно увеличить, если корпус корабля сделать длиннее.

Проектирование “Олимпии” еще только начиналось, когда в журнале “Scientific American” появилась последняя из серии статей по данной проблеме, авторами которой были Бернард Фоули и Вернер Зёдель (см. Vernard Foley, Werner Soedel. Ancient Oared Warships, “Scientific American”, April 1981). В этой статье авторы привели установленные ими некоторые важные обстоятельства, относящиеся к триреме. Они правильно указывают, что для своих размеров корабль отличался исключительной легкостью. По их оценкам, при длине около 40 м трирема весила “менее 40 т”. Позднее они указали меньшую цифру. Все ранее построенные в чертежах модели были гораздо массивнее, и это свидетельствовало о том, что их авторы недооценили конструктивное совершенство этого типа корабля. Фоули и Зёдель обратили также внимание на подтвержденную другими данными скорость и маневренность триремы, которые в значительной степени определялись небольшой массой судна. Они, однако, не подтвердили своих выводов расчетами скорости и энергетических возможностей корабля.

Было очевидно, что одних литературных и эпиграфических, а также отраженных в произведениях искусства данных недостаточно для полной характеристики триремы. Необходимо было определить форму корпуса и общую конструкцию судна. Эти важные сведения недавно были получены археологами в результате поисковых работ, проведенных ими на дне Средиземного моря. Им удалось установить форму корпуса и конструкцию как парусных торговых, так и длинных весельных судов. Все эти данные, с учетом физических законов, позволили с большой точностью (в пределах нескольких сантиметров по поперечному сечению и нескольких метров по длине) определить форму и устройство трирем.

Конструкция корабля была чрезвычайно компактной, поэтому специалисты надеялись, что ответы на некоторые невыясненные вопросы будут получены непосредственно в процессе воссоздания модели судна. Так, например, считалось общепризнанным, что для сохранения вертикального положения на поверхности воды на триремах располагали балласт, поскольку трирема имела достаточно большую высоту над водой, чтобы можно было разместить гребцов в три яруса. Однако в древних описаниях морских сражений имеются упоминания о том, что победители оттаскивали обломки разбитых вражеских кораблей с места битвы. Кроме того, греческое слово, обычно переводимое как “затонувший”, может также означать “затопленный”. Как указывал в 1841 г. Огастин Ф.Б. Крьюз в Британской энциклопедии, “корабли, о которых говорили как о затонувших, очевидно, просто пробивали и топили”. В этом случае они или совсем не имели балласта, или же он был недостаточно тяжел, чтобы увлечь деревянные конструкции корабля на морское дно. Кроме того, балласт утяжелял бы корабль, что было нежелательным для такого быстроходного судна. Вот почему в процессе реконструкции корабля специалисты с удовлетворением убедились в том, что для сохранения стабильности триремы совсем не нуждались в балласте. Из этого, в частности, следует, что вероятность обнаружить обломки трирем на дне Средиземного моря в наши дни весьма незначительна, и поэтому мы не можем рассчитывать на важные находки.


Рис.6. Эффективная мощность, необходимая для движения “Олимпии” с разными скоростями, была рассчитана на модели корабля в Национальном техническом университете в Афинах. Голубой участок соответствует мощности, расходуемой на преодоление сопротивления трения, красный – на преодоление волнового сопротивления. Из графика видно, что при скорости 7 узлов, которую удалось развить на корабле в 1987 г., максимальная эффективная мощность составляла 10,5 кВт или 0,062 кВт на каждого гребца. Если бы экипажу корабля удалось добиться результатов, которые показывают легкие спортивные катера ВМС США (0,128 кВт на каждого гребца или 21,8 кВт для всего экипажа), то трирема с поднятыми рулями могла бы двигаться со скоростью 9,3 узла.

По закону Архимеда масса корабля равна массе вытесняемой им воды. Поэтому правильно рассчитанная модель корабля должна при полной нагрузке держаться на воде на уровне ватерлинии, так чтобы весла могли свободно работать. При создании модели триремы мы особо тщательно подходили к правильному расчету корпуса, поскольку водоизмещение и положение ватерлинии корабля в основном определяются формой и массой корпуса. В свою очередь эти характеристики в прошлом определялись техникой строительства древних судов. Процессу восстановления очень помогли обнаруженные Фростом остатки длинных весельных судов.

Во всех ранее предлагавшихся вариантах восстанавливаемых трирем конструкции корпусов содержали ошибки: они были чрезмерно массивны, поскольку их рассчитывали по образцу средневековых галер или более поздних деревянных судов, и, кроме того, они несли балласт. Для всех традиционных конструкций деревянных кораблей их корпуса получали возведением остова (киля, форштевня и ахтерштевня) с последующим закреплением поперечных элементов наподобие ребер. Затем корпус снаружи, а часто и изнутри обшивали досками, которые прибивали гвоздями или привинчивали болтами. Корпус герметизировали, для чего швы между досками конопатили волокнистым материалом, например хлопчатобумажными или пеньковыми жгутами. Одновременно это предотвращало наползание досок друг на друга. Внутри остова также имелись массивные продольные элементы: кильсон над килем и “клямсы”, или “привальные брусья”, под торцами палубных бимсов на каждом борту корабля. Таким образом, сначала возводили внутренние, а затем внешние части корабля.

В древнем Средиземноморье вплоть до второй половины первого тысячелетия н. э. корабли и лодки строили совершенно иначе. Их начинали с обшивки и затем последовательно переходили к внутренним частям. И далеко не все такие методы известны нам. При такой технике доски крепили друг к другу кромками, с их постепенным наращиванием снизу вверх, начиная от киля. Доски соединяли многочисленными шипами из твердых пород дерева, которые плотно заделывали в углубления, или гнезда, вырезанные в кромках досок. Шипы замыкали двумя штифтами, один из которых проходил через нижнюю доску в нижнее отверстие шипа, другой – через верхнюю доску в верхнее отверстие шипа. Такой способ весьма трудоемок, однако он обеспечивал очень прочный стык, благодаря чему из досок получалась цельная конструкция корпуса, удовлетворяющая даже современным техническим требованиям и способная выдержать сдвигающие напряжения в плоскости любого из его элементов. Различные находки остатков древних средиземноморских кораблей подтвердили предположение о широком применении в кораблестроении стыковых соединений.


Рис.7. Расположение гребцов на восстановленной триреме. Слева – фронтальное сечение, справа – вид сбоку. Для размещения гребцов в три яруса корпус должен иметь достаточный развал. Для уключин верхнего ряда весел сделаны выносные кронштейны, отстоящие от борта на 0,6 м. Гребцы нижнего ряда сидят дальше от борта, чем гребцы верхнего ряда. Все сиденья наклонены к борту на несколько градусов.

По сравнению с техникой кораблестроения, когда сначала возводили остов, описанный выше, способ позволял делать обшивку более тонкой, поскольку он обеспечивал большую прочность. Да и сам корабль мог быть не столь массивным, так как в этом случае ребра были предназначены лишь для придания жесткости корпусу с учетом местной и общей деформации. Ребра можно было постепенно, по мере готовности корпуса, вставлять в него, обычно тремя несоединенными между собой ярусами. В данном случае они уже не нужны были для стягивания досок, как это имеет место в современных, хотя и более экономичных, но менее элегантных по замыслу конструкциях. Трирема могла вмешать 170 гребцов, поскольку внутри ее не было больших продольных и поперечных брусьев.

Рассмотренный метод строительства был также обусловлен необходимостью получения достаточно легкого и компактного (с небольшим водоизмещением) корпуса, который при полной нагрузке корабля мог устойчиво держаться на заданной ватерлинии. Поперечное сечение корпусов древних кораблей имело форму сечения бокала, обеспечивающую надежное крепление штифтами тех шипов, которые соединяли киль с доской шпунтового пояса (рядом с килем), а также получение жесткой при изгибе балки по центру корабельного днища. Кроме того, при данной форме корпуса его площадь под ватерлинией была небольшой, за счет чего водоизмещение корабля уменьшалось примерно до 40 т, что весьма немного, если учесть, что его длина на уровне ватерлинии была более 30 м. У современного корпуса с плоским днищем и прочной скуловой частью, но при той же осадке и ширине, объем погруженной части был бы значительно больше, и водоизмещение корабля увеличилось бы, по меньшей мере, до 70 т.

В процессе работ по восстановлению корабля мы обнаружили, что форма сечения корпуса и способ его строительства были обусловлены и рядом других требований. Применяемая система стыков и штифтов была необходима для обеспечения сопротивления сдвигающим нагрузкам, возникающим из-за неравномерного распределения массы и плавучести по длине относительно узкого и протяженного корпуса. Тяжелый киль и прилегающие к нему доски, образующие перегиб в контуре поперечного сечения, обеспечивали необходимую осадку корпуса и достаточную его прочность на изгиб в продольном направлении. Кроме того, корпус в сечении на уровне ватерлинии был довольно широким, одновременно сохраняя низкий объем водоизмещения, что обеспечивало кораблю хорошую остойчивость. Удлиненный киль ниже основной части днища обеспечивал сопротивление дрейфу и за счет этого корабль уверенно маневрировал под парусами. В то же время такое сечение корпуса позволяло довольно свободно размешать гребцов, каждый ряд которых располагался ближе к борту и сидел выше по сравнению с нижним рядом. И, наконец, применяемая форма корпуса облегчала очистку, ремонт и обновление покрытия днища с его наружной стороны, когда корабль был на стапелях или на суше.

Материал предоставлен сайтом
"X Legio. Боевая техника древности".

Перейти на сайт откуда взято, и ко 2 части

Сайт управляется системой uCoz